The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces I

نویسندگان

چکیده

<p style='text-indent:20px;'>In this paper we study the Riemann-Liouville fractional integral of order <inline-formula><tex-math id="M1">\begin{document}$ \alpha>0 $\end{document}</tex-math></inline-formula> as a linear operator from id="M2">\begin{document}$ L^p(I,X) into itself, when id="M3">\begin{document}$ 1\leq p\leq \infty $\end{document}</tex-math></inline-formula>, id="M4">\begin{document}$ I=[t_0,t_1] (or id="M5">\begin{document}$ I=[t_0,\infty) $\end{document}</tex-math></inline-formula>) and id="M6">\begin{document}$ X is Banach space. In particular, id="M7">\begin{document}$ obtain necessary sufficient conditions to ensure its compactness. We also prove that defines id="M8">\begin{document}$ C_0- $\end{document}</tex-math></inline-formula>semigroup but does not uniformly continuous semigroup. close by presenting lower higher bounds norm operator.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals

In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.

متن کامل

Strong Barrelledness Properties in Lebesgue-Bochner Spaces

If (Ω,Σ, μ) is a finite atomless measure space and X is a normed space, we prove that the space Lp(μ,X), 1 ≤ p ≤ ∞ is a barrelled space of class א0, regardless of the barrelledness of X. That enables us to obtain a localization theorem of certain mappings defined in Lp(μ,X). By “space” we mean a “real or complex Hausdorff locally convex space”. Given a dual pair (E,F ), as usual σ(E,F ) denotes...

متن کامل

The near Radon-nikodym Property in Lebesgue-bochner Function Spaces

Let X be a Banach space and (Ω,Σ, λ) be a finite measure space, 1 ≤ p < ∞. It is shown that L(λ,X) has the Near Radon-Nikodym property if and only if X has it. Similarly if E is a Köthe function space that does not contain a copy of c0, then E(X) has the Near Radon-Nikodym property if and only if X does.

متن کامل

Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions

* Correspondence: [email protected] Department of Mathematics, Faculty of Science, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia Full list of author information is available at the end of the article Abstract This article investigates a boundary value problem of Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2022

ISSN: ['1534-0392', '1553-5258']

DOI: https://doi.org/10.3934/cpaa.2022118